Homological algebra exercise sheet Week 9

1. In this exercise we will show the snake lemma using the notion of convergence of first quadrant spectral sequences. Recall:

Lemma 0.1 (Snake Lemma). Consider a commutative diagram in an abelian category \mathcal{A}

$$A' \xrightarrow{\alpha} B' \xrightarrow{C'} C' \xrightarrow{} 0$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$

$$0 \xrightarrow{} A \xrightarrow{} B \xrightarrow{\beta} C$$

such that the rows are exact. Then there is an exact sequence

$$\ker f \to \ker g \to \ker h \to \operatorname{coker} f \to \operatorname{coker} g \to \operatorname{coker} h$$

Moreover if α is monic, then so is $\ker f \to \ker g$, and if β is epi, then so is $\operatorname{coker} g \to \operatorname{coker} h$.

For this, consider the first quadrant double complex with bottom left corner being

$$0 \longleftarrow C' \longleftarrow B' \stackrel{\alpha}{\longleftarrow} A' \longleftarrow K'$$

$$\downarrow^{h} \qquad \downarrow^{g} \qquad \downarrow^{f}$$

$$K \longleftarrow C \stackrel{\beta}{\longleftarrow} B \longleftarrow A \longleftarrow 0$$

where $K' = \ker \alpha, K = \operatorname{coker} \beta$, and define the associated spectral sequence as in Exercise 1 of Sheet 8. Throughout this exercise, we will assume the true fact that this spectral sequence converges to the homology of the total complex $H_*(T)$ (see for example Section 5.6 of Weibel's book).

- (a) Show that every term of the E^2 page is 0 except for $E^2_{3,0}$ and $E^2_{1,1}$ which are isomorphic one to each other.
- (b) Show the snake lemma.
- 2. Let $\{E_{pq}^r\}$ be a regular upper half-plane spectral sequence, that is $E_{pq}^r = 0$ whenever q < 0, such that for any p, q with $q \ge 0$, $E_{pq}^{\infty} \cong \mathbb{Z}/2\mathbb{Z}$. Show that E approaches H_* and converges to H'_* , where $H_n := \mathbb{Z}, H'_n := \mathbb{Z}_2$ (the 2-adic numbers) for any n.

3. In this exercise we will construct the Wang sequence. Suppose that we have a fibration ${\bf x}$

$$F \xrightarrow{i} E \xrightarrow{\pi} S^n$$

where the base space is an *n*-sphere for $n \geq 2$.

(a) Show that we have an exact sequence

$$0 \to E^{\infty}_{n,q} \to H_q(F) \stackrel{d^n}{\to} H_{q+n-1}(F) \to E^{\infty}_{0,q+n-1} \to 0$$

for each $q \geq 0$, where d^n is a differential from the Leray-Serre spectral sequence.

(b) Show that for each $q \ge 0$ we have a short exact sequence

$$0 \longrightarrow E_{0,q}^{\infty} \longrightarrow H_q(E) \longrightarrow E_{n,q-n}^{\infty} \longrightarrow 0.$$

(c) Use the last two exercises to show that there is a long exact sequence

$$\dots \to H_q(F) \xrightarrow{i_{\star}} H_q(E) \to H_{q-n}(F) \xrightarrow{d^n} H_{q-1}(F) \xrightarrow{i_{\star}} H_{q-1}(E) \to \dots$$

- 4. In this exercise we will calculate the homology groups of the loop space ΩS^n for $n \geq 2$.
 - (a) Use the Serre long exact sequence to calculate $H_p(\Omega S^n)$ for $p \leq n-1$.
 - (b) Use induction and the Wang sequence to calculate $H_p(\Omega S^n)$ for $p \geq n$.